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A method is proposed to construct an equilibrium density distribution function in the simulation of com-
pressible flows at high Mach number by the lattice-Boltzmann method. In this method, the conventional
Maxwellian distribution function is replaced by a circular function which is very simple and satisfies all needed
statistical relations to recover the compressible Navier-Stokes equations. The circular function is then distrib-
uted to the lattice velocity directions by Lagrangian interpolation in such a way that all the needed statistical
relations are exactly satisfied when the integral in the phase space is replaced by the summation in the context
of the lattice-Boltzmann �LB� method. In this framework, the equilibrium distribution functions and the
associated lattice velocity model can be derived naturally without assuming specific forms. Two LB models
with adjustable specific heat ratio, respectively, for one-dimensional �1D� and two-dimensional �2D� compress-
ible flows are shown in the paper. Some test cases of compressible flows with strong shock waves are simulated
to validate the present approach. Excellent results are obtained. Note that in the simulation, the total variation
diminishing �TVD� scheme was used to capture the discontinuity with coarse mesh.
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I. INTRODUCTION

As an alternative method to simulate incompressible
flows, the lattice-Boltzmann method �LBM� �1–11�, which is
developed from the lattice gas automaton �LGA� approach
�12–15�, has received more and more attention in recent
years. The governing equation of the LBM can be written as

f i�x + ei�t,t + �t� − f i�x,t� = � , �1�

where f i�x , t� is the density distribution function along the ith
lattice velocity direction at the physical position x, ei is the
lattice velocity in the ith direction, and � is the collision
operator. In the application of the LBM, the Bhatnagar-
Gross-Krook �BGK� collision model �16� is often used. As
such, � can be written as

� =
�t�f i

eq�x,t� − f i�x,t��
�

, �2�

where f i
eq�x , t� is the equilibrium distribution function, which

is a function of local density, velocity, and temperature of the
flow, and � is the relaxation time.

In the LBM application, the key issue is the determination
of the relaxation time � and equilibrium distribution function
f i

eq. � can be linked to the viscosity of the fluid through the
Chapman-Enskog expansion in such a way that the macro-
scopic variables such as density, velocity, and pressure com-
puted from the LBM can satisfy the Navier-Stokes equations
with second-order accuracy. f i

eq is usually a polynomial sim-
plified from the exponential form of the Maxwellian distri-
bution function. Usually, the quadratic form �second-degree
polynomial in terms of particle speed and flow velocity� is
used, which can be directly derived by applying the trun-
cated Taylor series expansion to the exponential form of the

Maxwellian function in terms of the Mach number �17–19�.
Recently, Shan et al. �20� presented a theoretical framework
for representing hydrodynamic systems through a systematic
discretization of the Boltzmann kinetic equation by means of
Hermite tensor expansion of the Maxwellian function. On
the other hand, f i

eq can be determined in the following way.
At first, a polynomial with unknown coefficients is assumed
for the equilibrium function. The unknown coefficients are
determined by the physical and mathematical constraints
such as satisfying the conservation laws and recovering the
Navier-Stokes �NS� equation �21�. Based on this idea, Zheng
et al. �22� proposed a platform, in which the users can design
their own lattice velocity models and associated coefficients
in the equilibrium distribution function.

Since the quadratic form of f i
eq is simplified from the

Maxwellian distribution function by the Taylor series expan-
sion in terms of the Mach number, the coefficient in the
equilibrium distribution function depends on the temperature
�T�. For incompressible isothermal flow, T can be considered
as a constant. Thus, the coefficient will not generate a tem-
perature gradient when the Chapman-Enskog multiscale ex-
pansion is applied. As a result, Navier-Stokes equations can
be well recovered. The natural convection problem can also
be treated the same way as temperature change is only con-
sidered in the buoyancy force according to the Boussinesq
approximation. However, when compressible flow is consid-
ered where the temperature is changed, the coefficient in the
equilibrium distribution function will generate additional
terms of the temperature gradient in the process of Chapman-
Enskog expansion, which do not exist in the macroscopic
governing equations. This is one of the reasons why the con-
ventional equilibrium distribution function cannot be applied
to compressible flow. Another reason is the limitation of the
small Mach number resulting from the Taylor series expan-
sion in terms of the Mach number. To apply the technique of
the LBM for simulation of compressible flows, some at-
tempts have been made. Yan et al. �23� proposed a two-*Corresponding author. Electronic address: mpeshuc@nus.edu.sg
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dimensional �2D� 9-bit model with two rest energy levels,
which can recover the Euler equation with the streaming-
collision process. The Sod and Lax shock tube problem was
successfully simulated by this model. Its drawback is that
there are a number of free parameters in the model to be
specified. Shi et al. �24� also constructed a 2D 9-bit model
which can recover the Euler equation. The form of f i

eq is
assumed to be the same as in the incompressible
2-dimensional 9-bit �D2Q9� model, but the coefficients are
chosen differently. The rest energy of particles is also intro-
duced in the model to adjust the specific heat ratio �. Instead
of using the streaming-collision process, a TVD finite differ-
ence scheme �25� was used to solve the differential form of
the lattice-Boltzmann equation. This method also includes
many free parameters which should be chosen carefully to
make sure of the positivity of f i

eq. Kataoka and Tsutahara
�26� proved that, in the limit of small Knudsen number, the
differential form of the lattice-Boltzmann equation could ap-
proach the Euler equation in the smooth region, and if the
stiff region could not be resolved numerically by a mesh
size, it could approach the weak solution of the Euler equa-
tion as long as a consistent discretization scheme is used.
This important finding implies that discontinuity-capturing
schemes should be applied to solve the differential form of
the lattice-Boltzmann equation in order to capture disconti-
nuities with a finite number of mesh points. Based on this
finding, they developed several models for Euler and NS
equations �26,27�, and the second-order upwind scheme was
used to solve the differential form of the lattice-Boltzmann
equation. The drawback of their models is a numerical insta-
bility when the Mach number is above 1.

All the above work shows that the use of the Maxwellian
distribution function or its equivalent may not be necessary
in the LBM simulation of compressible flows. The above
work also gives some useful hints for the simulation of com-
pressible flows by the LBM. The first is that, in order to
make � adjustable, the rest energy should be introduced. The
second is that it might be more feasible to solve the differ-
ential form of the lattice-Boltzmann equation by using finite
difference method �FDM�, finite volume method �FVM�, or
finite element method �FEM� for compressible flows with
discontinuities. On the other hand, it has to be indicated that
so far, only the results of subsonic cases with weak shock
waves were presented in these models. The simulation of
compressible flows with strong shock waves by the LBM is
still a challenging issue. Further work is needed on this de-
velopment.

Also towards the simulation of compressible flows, Sun
and Hsu �28–32� developed the adaptive LBM. In this
model, the pattern of lattice velocities varies with the mean
flow velocity and the internal energy. This adaptive LBM
permits the mean flow to have a high Mach number. A num-
ber of compressible flow cases with weak or strong shock
waves were successfully simulated by the adaptive LBM. On
the other hand, we have to indicate that unlike the conven-
tional LBM, in the adaptive LBM, the density, momentum,
and energy are all needed to be transported with nonlinear
convection �streaming�. � is fixed as 1 in the adaptive LBM,
which may cause some inconvenience for its application.
Nevertheless, the adaptive LBM is very illuminative. The

equilibrium distribution function in the adaptive LBM has
nothing to do with the Maxwellian distribution function, but
it can be used to successfully simulate compressible flows.
Based on the above work, we may be able to develop some
simple equilibrium distribution functions which can recover
the compressible Euler and NS equations.

In this work, based on the idea of simplified equilibrium
distribution functions of the adaptive LBM, we made a fur-
ther step to construct an equilibrium distribution function for
compressible flows. Different from the adaptive LBM, in our
method, the lattice velocity pattern is fixed. And from a cir-
cular function, f i

eq and the lattice velocity model are derived
naturally without assuming specific forms, which makes f i

eq

contain no free parameters. Like the earlier work �24,26,27�,
the differential form of the lattice-Boltzmann equation is
solved by the TVD �25� scheme. Some supersonic flows with
weak and strong shock waves were simulated successfully by
the present model. In particular, the case of double Mach
reflection at Mach number 10 was accurately simulated. Sun
and Hsu �28–32� simulated this case with the adaptive LBM
where the lattice velocity pattern is not fixed.

The rest of the paper is organized as follows. In Sec. II,
our method of constructing the equilibrium distribution func-
tion will be described in detail. At first, a simplified equilib-
rium function is proposed to replace the Maxwellian distri-
bution function as the base of the whole deriving process.
Then, by applying the Lagrange interpolation method in the
phase space, the equilibrium distribution functions and asso-
ciated lattice velocity models are derived naturally. Section
III presents numerical methods to solve the governing equa-
tions in the case of discontinuities. Section IV shows the
numerical results and discussion. Finally, Sec. V concludes
the paper.

II. METHOD OF CONSTRUCTING EQUILIBRIUM
DISTRIBUTION FUNCTIONS IN LBM SIMULATION

OF INVISCID COMPRESSIBLE FLOWS

A. Continuum Boltzmann equation and Maxwellian
distribution function

The lattice-Boltzmann equation can be derived from inte-
gration of the discrete Boltzmann equation, and the discrete
Boltzmann equation is from the continuum Boltzmann equa-
tion. When the BGK collision model is used, the continuum
Boltzmann equation can be written as

� f

�t
+ � · �f = �g − f�/� , �3�

where f is the density distribution function, g is its corre-
sponding function at equilibrium state, � is the particle ve-
locity, and � is the relaxation time. For the 2D continuum
Boltzmann equation, the Maxwellian function �33�

g = ��2�RT�−�K+2�/2exp�−

��x − u�2 + ��y − v�2 + �
k=1

K

�k
2

2RT
�

�4�
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is taken as the equilibrium distribution function. Here, �x and
�y are the x and y components of the particle velocity, u and
v are the mean velocity components, and �k, k=1, . . . ,K, are
velocities standing for the internal degrees of freedom which
include z component velocity, rotational movement velocity,
and so on. K is related to the specific heat ratio as K= �5
−3�� / ��−1�+1 which is 3 for a diatomic gas ��=7/5�. For
the standard LBM which can only simulate isothermal in-
compressible flows, these internal degrees of freedom are
neglected and the Maxwellian function is reduced to

g = ��2�RT�−1exp�−
��x − u�2 + ��y − v�2

2RT
	 .

In order for Eq. �3� to recover the conventional Navier-
Stokes equation, g should satisfy the following constraints
�27�:


 g d� = � , �5�


 g�	d� = �u	, �6�


 g��	
2 + 2
�d� = ��u	

2 + bRT� , �7�


 g�	��d� = �u	u� + p�	�, �8�


 g��	
2 + 2
���d� = ��u	

2 + �b + 2�RT�u�, �9�


 g�	���d� = p�u	�� + u��	 + u�	�� + �u	u�u,

�10�


 g��
2 + 2
��	��d�

= ���b + 2�R2T2�	�

+ ��b + 4�u	u� + u
2�	��RT + u

2u	u�� . �11�

Here, 
 is the average specific rest energy which comes from
the internal motion of molecules, b is a positive constant
related to the specific heat ratio, � is �= �b+2� /b, and �, u,
T, p, and R are density, mean velocity, temperature, pressure,
and gas constant, respectively. Equations �5�–�7� are mass,
momentum, and energy conservation relations, respectively,
while Eqs. �8� and �9� are flux relations of momentum and
energy. Equations �10� and �11� are the diffusion and dissi-
pation relations of momentum and energy. The resultant
compressible Navier-Stokes equations can be written as

��

�t
+

��u	

�x	

= 0, �12�

��u	

�t
+

��u	u�

�x�

+
�p

�x	

=
�P	��

�x�

, �13�

��1

2
u	

2 + bRT�
�t

+

��1

2
u	

2 + bRT�u	 + pu	

�x	

=
�

�x�
k

�T

�x�

− P	�� u	� , �14�

where

p = �RT =
1

D

 g��	 − u	�2d� ,

P	�� = � �u	

�x�

+
�u�

�x	

−
2

3

�u

�x

�	�� + �B
�u

�x

�	�, �15�

and � is the viscosity, �B is the bulk viscosity, and k is the
thermal conductivity:

� = �RT� ,

�B = 2�1/3 − 1/b�RT� ,

k = �1 + b/2��R2T� . �16�

Since �= �b+2� /b, we have

� − 1 = 2/b . �17�

Thus, the heat conductivity k in Eq. �16� can be written as

k =
�R�

� − 1
= cp� , �18�

which shows that for this model, the Prandtl number is
1—that is, Pr=�cp /k=1. Obviously, the fixed Prandtl num-
ber is a disadvantage of the BGK collision model.

B. Circular function as a simple equilibrium
distribution function

As shown in Eq. �4�, the Maxwellian distribution function
is in exponential form. It is not easy to manipulate in the
LBM. In this section, we will propose a simple circular func-
tion to replace the Maxwellian function as the equilibrium
distribution function. For the 2D case, the circular function
for g can be defined as
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g = � �

2�c
if �� − u� = c � �D�� − 1�e and 
 = ep = �1 −

D

2
�� − 1�	e ,

0 otherwise,
� �19�

where ep is the specific rest energy and D=2 is the spatial
dimension. The physical meaning of Eq. �19� is that all the
mass, momentum, and energy concentrate on a circle located
in a 3D space of �x−�y −
 as shown in Fig. 1. Here, the rest
energy 
 is added into the phase space as a new coordinate
because the rest energy does not come from the particle
transversal velocity. The particle velocity on the circle can be
written as

� = u + c , �20�

and Eq. �19� gives �2D case�

e =
c2

2�� − 1�
=

bc2

4
, �21�

ep = �1 − �� − 1��e =
bc2

4
−

c2

2
. �22�

As shown in Fig. 1, all the particles are concentrated on the
circle. Thus, the integral over the velocity space in Eqs.
�5�–�11� is reduced to the one along the arclength of the
circle. Along the circle, we have

d� = ds = c d� ,

where � is the angle of the position vector on the circle with
the x axis. For a small arclength ds on the circle, the mass,
momentum, and energy are

d� =
�

2�c
ds =

�

2�
d� ,

dP	 =
�

2�c
�u + c�	ds =

�

2�
�u + c�	d� ,

2dE =
�

2�c
��u + c�

2 + 2ep�ds =
�

2�
��u + c�

2 + 2ep�d� .

�23�

Using the formulations

and Eqs. �17�, �21�, and �22�, we can show that the circular
function given by Eq. �19� satisfies the following relations:

FIG. 1. A circle on the plane of 
=ep in the �x-�y-
 space. u is
the mean velocity, and c is the effective peculiar velocity.
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In the derivation of Eqs. �25�–�31�, we have used the follow-
ing relations:

RT = c2/2, �32�

p = �c2/2 = �RT . �33�

By comparing Eqs. �25�–�31� with Eqs. �5�–�11�, it was
found that only Eq. �31� has a small difference from Eq. �11�
in the coefficient of the first term on the right-hand side. This
difference of coefficient only affects the heat conductivity.
Similar to Eq. �16�, the heat conductivity for the present
model is

k = b�R2T�/2 = R�/�� − 1� = cv� . �34�

Therefore, the Prandtl number in this model is

Pr = �cp/k = cp/cv = � . �35�

This is the major difference between the use of the circular
distribution function and the Maxwellian distribution func-
tion. It will not be a problem if we only consider construct-
ing the LB model for inviscid flows.

C. Constraints of discretization from the circular function
to a lattice model

It was shown in the above section that the circular func-
tion satisfies the constraints �25�–�31� and the compressible
Navier-Stokes equation can be recovered with a fixed Prandtl
number of �. However, the circular function cannot be di-
rectly applied in the LBM. Although the circular function is
greatly simplified as compared to the Maxwellian distribu-
tion function, it is still a continuous function and the integral
in the phase space is performed along the circle. In the con-
text of the LBM, the discrete lattice velocity is given and
fixed in each lattice direction, and the integral in the relevant
constraints is replaced by a summation over all lattice veloc-
ity directions. It is expected that the equilibrium distribution
function in a lattice model can be obtained by discretizing
the circular function onto the lattice in such a way that the
constraints �25�–�31� can be satisfied in the context of the
LBM when the integral is replaced by the summation. In this
section, we will study in this process what condition of dis-
cretization should be satisfied. It is noted that Eqs. �25�–�29�
are needed to recover the Euler equation, while Eq. �301� is
required to recover the diffusion term of the momentum
�Navier-Stokes� equation and Eq. �31� is needed to recover

the diffusion term of the energy equation. Since we only
focus on inviscid compressible flow in this study, we will
only discuss the constraints �25�–�29�.

Suppose that in the �x−�y −
 space, there are 1 , . . . ,N
discrete points �lattice velocities in the phase space� ei. The
circular function will be discretized to all ei directions. For
any d� on the circle, it has a contribution �i�� ,
�d� in the
lattice direction ei, where �i�� ,
� is called the assigning
function. The contribution of the whole circle to ei direction
can be written as

�i =
 �i��,
�d� =
�

2�c

 �i��,
�ds; �36�

�i could be the equilibrium distribution function in the ei
direction, f i

eq. For convenience, we consider a case in which
all ei are located on the plane of 
=ep. On this plane,
�i�� ,
� can be reduced to �i���. In the context of the LBM,
the constraints �25�–�29� can be written as

�
i=1

N

�i�ei
2 + 2ep�ei	 =
 �2dE��u + c�	. �41�

Note that the integral in the above equations is along the
circle. We can see from Fig. 2 that the discrete velocity ei
and the original velocity � have the following relationship

ei = � + zi��� . �42�

Substituting Eq. �36� into Eq. �37� gives

�43�

Obviously,
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�
i=1

N

�i��� = 1 �44�

is a sufficient condition for Eq. �43�. Using Eq. �36�, we can
also have

�45�

The above equation can be further written as

�46�

By substituting Eq. �46� into Eq. �38� and using Eq. �44�, we
obtain

�47�

A sufficient condition for Eq. �47� is

�
i=1

N

�i���zi	 = 0. �48�

In a similar way, we can get the relationship

�49�

and its sufficient condition is

�
i=1

N

�i���zi	zi� = 0. �50�

With above formulations �44�, �48�, and �50�, Eq. �40� can be
satisfied automatically. Using the same approach, a sufficient
condition for Eq. �41� is

�
i=1

N

�i���zi	zi�zi = 0. �51�

Equations �44�, �48�, �50�, and �51� are the constraints for an
assigning function �i���. The use of an assigning function to
assign a variable from one point to several other points is
widely used in particle methods, such as the particle-in-cell
method, vortex method, and vortex-in-cell method. It was
found �34� that when the third-order Lagrange interpolated
polynomial is taken as the assigning function �i���, the con-
straints �44�, �48�, �50�, and �51� can be satisfied. Thus, in the
following, we will discuss the determination of the third-
order Lagrange interpolated polynomial on a given stencil
which is the lattice in the phase field.

D. Construction of Lagrangian interpolation polynomials

For a two-dimensional case, the complete set of third-
order polynomials should have ten terms in the form

P�x,y� = a0 + a1x + a2y + a3x2 + a4xy + a5y2 + a6x3 + a7x2y

+ a8xy2 + a9y3. �52�

This implies that �i�x ,y� should contain at least ten terms.
To determine the ten coefficients ai, i=0,1 , . . . ,9, Eq. �52�
has to be collocated at ten points. For the present problem,
these ten points are actually the lattice velocities in the phase
field. For all the lattice velocity models in the LBM, there is
a static particle with zero lattice velocity and certain moving
particles with nonzero lattice velocity. For the ten points in
the phase field, one point is for the static particle and the
other nine points are for the moving particles. Usually, the
nine points would be difficult to form a symmetric lattice
when a multispeed lattice velocity model is used. To get a
symmetric lattice and, in the meantime, to keep the complete
set of third-order polynomials, we may need to use more
than ten points in the phase field. Accordingly, we need to
add additional higher-order terms to Eq. �52�.

The LBM is often applied to the Cartesian mesh, in which
the D2Q9 lattice velocity model is well adapted and exten-
sively used. However, this D2Q9 model cannot be applied in
this study since it only has nine lattice velocities �nine points
in the phase field�. We can develop a symmetric lattice based
on the D2Q9 model. An example is the D2Q13 lattice model,

FIG. 2. Configuration of the circle and lattice points in the ve-
locity space. ei is one of lattice points, u is the mean velocity, c is
the effective peculiar velocity, and zi is the vector from the position
on the circle to ei.
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which is shown in Fig. 3. As compared with the D2Q9
model, the D2Q13 model has four additional velocities
�points� �2,0�, �0,2�, �−2,0�, and �0,−2�. Consequently,
three additional terms a10x

4+a11x
2y2+a12y4 should be added

to Eq. �52� so that when the collocation method is applied,
the problem is well posed. The polynomial for the 13 points
can be written as

P�x,y� = a0 + a1x + a2y + a3x2 + a4xy + a5y2 + a6x3 + a7x2y

+ a8xy2 + a9y3 + a10x
4 + a11x

2y2 + a12y4. �53�

With 13 points, each of the interpolation functions �i�x ,y�
can be put into the form of Eq. �53�. �i�x ,y� can be written
as

�i�x,y� = ait , �54�

where

ai = �ai,1,ai,2, . . . ,ai,13� ,

t = �1,x,y,x2,xy,y2,x3,x2y,xy2,y3,x4,x2y2,y4�T.

Once the coefficient vector ai is obtained, the interpolation
function �i�x ,y� is determined. On the other hand, �i�x ,y� is
a Lagrange-interpolated polynomial, which has the � prop-
erty: that is,

�i�xj,yj� = �ij, i, j = 1,2, . . . ,13. �55�

The above equation system can be put into the matrix-vector
form

�A��T� = �I� , �56�

where

�A� = �
a1,1 a1,2 ¯ a1,13

a2,1 a2,2 ¯ a2,13

� � � �
a13,1 a13,2 ¯ a13,13

� ,

�T� = �t�x1,y1�,t�x2,y2�, . . . ,t�x13,y13�� .

�I� is the identity matrix, and �xj ,yj� are the coordinates of
the collocation point. For this study, they are the x and y
components of the lattice velocity. It can be seen from Eq.
�56� that the coefficient matrix �A� is the inverse of the ma-
trix �T�. Once �A� is obtained, the interpolation function
�i�x ,y� is given by Eq. �55�. Using Maple or Mathematica,
�i�x ,y� can be obtained as follows:

�1�x,y� = 1 − 5x2/4 − 5y2/4 + x4/4 + x2y2 + y4/4,

�2�x,y� = 2x/3 + 2x2/3 − x3/6 − xy2/2 − x4/6 − x2y2/2,

�3�x,y� = 2y/3 + 2y2/3 − x2y/2 − y3/6 − x2y2/2 − y4/6,

�4�x,y� = − 2x/3 + 2x2/3 + x3/6 + xy2/2 − x4/6 − x2y2/2,

�5�x,y� = − 2y/3 + 2y2/3 + x2y/2 + y3/6 − x2y2/2 − y4/6,

�6�x,y� = yx/4 + x2y/4 + xy2/4 + x2y2/4,

�7�x,y� = − yx/4 + x2y/4 − xy2/4 + x2y2/4,

�8�x,y� = yx/4 − x2y/4 − xy2/4 + x2y2/4,

�9�x,y� = − yx/4 − x2y/4 + xy2/4 + x2y2/4,

�10�x,y� = − x/12 − x2/24 + x3/12 + x4/24,

�11�x,y� = − y/12 − y2/24 + y3/12 + y4/24,

�12�x,y� = x/12 − x2/24 − x3/12 + x4/24,

�13�x,y� = y/12 − y2/24 − y3/12 + y4/24. �57�

By substituting Eq. �57� into Eq. �36�, we can get all �i
which satisfy the constraints �37�–�41�. However, these sta-
tistical relations contain ep which could be a function of time
and physical space. This will bring some inconvenience in
applications. Usually, in a lattice model, the lattice properties
such as lattice velocity are given and fixed for every physical
position and time. As shown in the next section, the draw-
back of the ep dependence on time and physical space can be
removed by introducing the energy levels in the lattice
model.

E. Introduction of energy levels to get fully discrete fi
eq

Since 
 is another dimension standing for specific rest
energy, with the same idea of assignment, we may introduce
several fixed energy levels to assign ep. As ep appears lin-

FIG. 3. Configuration of the D2Q13 lattice velocity model.
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early in Eqs. �40� and �41�, conservation of the first-order
moment of �i in ep is enough, which means that only two
energy levels are needed, 
1=0 and 
2�ep. Linearly assign-
ing every �i onto the two energy levels gives

�i1 = �i�
2 − ep�/
2,

�i2 = �iep/
2,

which makes �v�iv
v=�iep. Thus �iv can satisfy

�
i=1

N

�
v=1

2

�iv = � ,

�
i=1

N

�
v=1

2

�ivei	 = �u	,

�
i=1

N

�
v=1

2

�ivei	ei� = �u	u� +
1

2
�c2�	� = �u	u� + p�	�,

�
i=1

N

�
v=1

2

�iv�ei
2 + 2
v� = ��u

2 + bRT� = 2�E ,

�
i=1

N

�
v=1

2

�iv�ei
2 + 2
v�ei	 = ��u

2 + �b + 2�RT�u	 = 2��E + p�u	,

�58�

to recover the compressible Euler equations, and we can use
�iv as f iv

eq. By this stage, a 2-dimensional, 13-velocity,
2-energy-level lattice model, named D2Q13L2, is completely
derived, and this model is shown in Fig. 4. All the deriva-
tions can be implemented with Maple or Mathematica. The
Appendix presents detailed formulations of �i and f iv

eq=�iv.
Note that 
2 is not a free parameter. It can be taken as 1 �see
the next section� from normalization. This means that there
are no free parameters in our lattice model.

F. Chapman-Enskog expansion to recover the Euler equation

It can be easily shown that the present model can make
the discrete Boltzmann equation

� f iv

�t
+ �	�f ivei	� = −

f iv
eq − f iv

�
�59�

recover Euler equations with Chapman-Enskog expansion.
With Chapman-Enskog expansion, the distribution function
is expanded with small disturbance as

f iv = giv + �f iv
�1� + O��2� �60�

and the following relationship is satisfied:

�
i,v � f iv

�n��
1

ei

1

2
ei

2 + 
v� �� = 0, n � 0. �61�

By multiplying Eq. �59� with the collision invariant vector
�1,ei� , 1

2ei�
2 +
v�T and doing summation, we get

�
i=1

N

�
v=1

2 �� � f iv

�t
+ �	�f ivei	�	�

1

ei�

1

2
ei�

2 + 
v
��

= �
i=1

N

�
v=1

2 �giv − f iv

�
	�

1

ei�

1

2
ei�

2 + 
v
� . �62�

By substituting Eqs. �58�, �60�, and �61� into Eq. �62�, we
can get macroscopic equations as

�

�t� �

�u	

�E
� + �	� �u	

�u	u� + p

��E + p�u	
� = �	� 0

�

q
� + O��2� , �63�

where

��

q
	 = − �

i=1

N

�
v=1

2

�f iv
�1�� ei	ei�

ei	1

2
ei�

2 + 
v� � �64�

are the stress and heat flux resulting from nonequilibrium
effects. Since the third-order polynomial is applied, the vis-
cous stress � can rightly recover P	�� in Eq. �15�. However,
q cannot recover to the right form. Since we only construct a
LB model for inviscid flows for which f iv=giv+O���, � and
q can be regarded as artificial dissipation. Thus Eq. �63� can
be simplified to

�

�t� �

�u	

�E
� + �	� �u	

�u	u� + p

��E + p�u	
� = � 0

O���
O���

� . �65�

The above derivation process clearly indicates that as long as
f iv

eq satisfies Eq. �58�, the Euler equation can be recovered.
Indeed, as shown in the previous section, our proposed equi-
librium distribution function satisfies Eq. �58�.

FIG. 4. Configuration of the D2Q13L2 lattice model.
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III. SOLUTION OF THE DISCRETE BOLTZMANN
EQUATION BY THE TVD SCHEME

Since Eq. �3� recovers the Euler equation in the order of
O���, the Knudsen number � should be very small in the
numerical simulation. In this case, the dimensionless width
of an interface �a shock wave or a contact discontinuity�
should be of the order of O���. In order to resolve the inter-
face, the mesh size should be smaller than O���. The use of
such a small mesh size is unacceptable. Kataoka and Tsu-
tahara �26� proved that with a finite-difference scheme of
pth-order accuracy, Eq. �59� is consistent with the weak form
solution of the Euler equation even when the mesh size is
much larger than O��� and the error is of the order of
max(O��xp� ,O���). This means that we can solve Eq. �59�
on a coarser grid.

To well capture the discontinuity, the numerical computa-
tion does need artificial dissipation. The artificial dissipation
in the present work comes from two parts. One is the model
dissipation which is from the collision term. The other is the
numerical dissipation resulting from the TVD discretization.
As shown in Eq. �16�, the model viscosity � is related to �
�=��. Since � is taken as very small �10−4� in this work, the
model dissipation is also very small and not enough to cap-
ture discontinuities without oscillation. So the main dissipa-
tion comes from the numerical part—that is, the TVD dis-
cretization. In this work, the second-order TVD scheme �35�
is used to solve Eq. �59�. In the smooth region, the spatial
accuracy of the scheme is second order, while near the dis-
continuity, its accuracy is reduced to first order. For the 2D
problem, in the Cartesian coordinate system, the discrete
Boltzmann equation can be written as

� f i

�t
+

��f ieix�
�x

+
��f ieiy�

�y
= −

f i − f i
eq

�
. �66�

Equation �66� is a linear hyperbolic equation system with a
source term. It can be solved by the following two steps:

� f i

�t
= −

��f ieix�
�x

−
��f ieiy�

�y
, �67�

� f i

�t
= −

f i − f i
eq

�
. �68�

With the Euler explicit scheme, Eqs. �67� and �68� can be
discretized as

f i,I,J
* − f i,I,J

n

�t
= −

1

�x
�Fi,I+1/2,J

n − Fi,I−1/2,J
n �

−
1

�y
�Gi,I,J+1/2

n − Gi,I,J−1/2
n � ,

f i,I,J
n+1 − f i,I,J

*

�t
= −

f i,I,J
* − f i,I,J

*eq

�
, �69�

where I and J are indices of mesh points in the x and y
directions, respectively, and F and G are numerical fluxes. In
this work, a TVD scheme �35� is chosen to evaluate the
numerical flux. The scheme can be expressed as

��au�
�x

=
�F

�x
=

1

�x
�hI+1/2 − hI−1/2� ,

hI+1/2 = FL,I+1/2 + FR,I+1/2,

FL,I+1/2 = FI
+ +

1

2
min mod��FI+1/2

+ ,�FI−1/2
+ � ,

FR,I+1/2 = FI+1
− −

1

2
min mod��FI+1/2

− ,�FI+3/2
− � ,

F+ = 1/2�a + �a��u ,

F− =
1

2
�a − �a��u . �70�

In numerical computations, the dimensionless form is pre-
ferred. There are three independent reference variables for
normalization, which are the reference density �0, reference
length L0, and reference internal energy e0. With the three
reference variables, other reference variables and nondimen-
sional variables can be defined as

u0 = �e0, t0 =
L0

u0
, t̂ =

t

t0
,

x̂ =
x

L0
, �̂ =

�

�0
, û =

u

u0
,

ê =
e

e0
, f̂ eq = feq��̂, û, ê� ,

�̂ = � =
�

t0
, 
̂2 =


2

e0
. �71�

The choice of e0 is very important. It determines u0 and
normalizes e to ê from which ĉ is computed. As shown in
Fig. 3, in order to make sure that the circle is located inside
the lattice to avoid extrapolation, we need �û � + �ĉ � ��2
where �2 is the shortest distance from the origin to the edges
of the D2Q13 lattice. So e0 should be sufficiently large. For
safety, e0 can be set to a value which is a little bit larger than
the maximum stagnation energy in the whole flow field, e0

�max�e*� where e*=e�1+ �−1
2 M2�. Similarly, 
2 should also

be given a value larger than the maximum ep in the whole
field. In our simulations, we set 
2=e0 for simplicity, making


̂2=1. It makes 
̂2 fixed and allows no free parameter in the
model. We only need to select e0 in the computation.

For inviscid flow, the nondimensional relaxation time �̂
should be very small to recover the Euler equation—for in-
stance, 10−3 or 10−4 as shown in �26�. For this case, Eq. �66�
has a stiff source term. It was found that when the relaxation
term is treated explicitly, in order to resolve the relaxation
effect, the dimensionless time step �t̂ has to be considerably
smaller than �̂, such as �̂ /4 as used in the work of Kataoka
and Tsutahara �26�. So the Courant-Friedrichs-Lewy �CFL�
number is seriously limited. The implicit integration of the
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stiff source term might have a better performance.
The boundary conditions involved in this work are super-

sonic inflow, supersonic outflow, and reflective wall. For the
supersonic inflow, we just need to set f i= f i

eq computed from
the macroscopic variables of �, u, v, and e. For the super-
sonic outflow, the zeroth-order extrapolation is used. On the
reflective wall, two levels of ghost cells inside the wall are
used and their f i are determined by

f i,v,−1 = fmirror�i�,v,1,

f i,v,−2 = fmirror�i�,v,2, �72�

where cells −1 and −2 are the ghost cells of cells 1 and 2,
respectively, and mirror�i� means the mirror direction of i.

IV. NUMERICAL RESULTS AND DISCUSSION

To validate the proposed model and show its capability
for the simulation of compressible flows with shock waves,
four standard test cases are considered. These cases either
have an exact solution or numerical results given by Euler
solvers, which can be used to compare with the present re-
sults.

A. Case 1: Sod shock tube

The first test case is the Sod shock tube. This is a one-
dimensional problem. All the formulations shown in Sec. II
are for the two-dimensional case. Although we can use the
2D model to simulate this 1D case, use of the 1D model can
save the computational effort. We can easily follow the same
procedure shown in Sec. II to construct a 1D model. For the
1D case, the circular function is reduced to a simpler two-
point function—that is,

g = ��

2
if �� − u� = c = �D�� − 1�e and 
 = ep = �1 −

D

2
�� − 1�	e ,

0 otherwise,
� �73�

where D=1. Using five-point Lagrange interpolation, we can get a D1Q5L2 model as

�1 =
��d1

2d2
2 − d1

2u2 − d1
2c2 − d2

2u2 − d2
2c2 + u4 + 6u2c2 + c4�

d1
2d2

2 ,

�2 =
��3d1uc2 − d1d2

2u − d2
2u2 − d2

2c2 + 6u2c2 + c4 + u4 + d1u3�
2d1

2�d1
2 − d2

2�
,

�3 =
��− 3d1uc2 + d1d2

2u − d2
2u2 − d2

2c2 + 6u2c2 + c4 + u4 − d1u3�
2d1

2�d1
2 − d2

2�
,

�4 = −
��− d2d1

2u + 3d2uc2 − d1
2u2 − d1

2c2 + 6u2c2 + c4 + u4 + d2u3�
2d2

2�d1
2 − d2

2�
,

�5 = −
��d2d1

2u − 3d2uc2 − d1
2u2 − d1

2c2 + 6u2c2 + c4 + u4 − d2u3�
2d2

2�d1
2 − d2

2�
, �74�

f i0
eq = �i�
2 − ep�/
2,

f i1
eq = �iep/
2, �75�

where d1=1 and d2=2, making the five discrete velocities as
ei= �0,d1 ,−d1 ,d2 ,−d2�.

The above equilibrium distribution functions can be used
to solve 1D problems. For the problem considered, the initial
condition is given as

��L,uL,eL� = �1,0,2.5�, − 0.5 � x � 0,

��R,uR,eR� = �0.125,0,2�, 0 � x � 0.5. �76�

In this case, we set �̂=�=10−4, �0=1, L0=1, and the refer-
ence internal energy e0=4�max�e*�=2.5. The mesh size is
taken as �x=1/200, and the time step size is chosen as �t
=� /4. Before the waves propagate to the two boundary ends,
the distribution functions at the boundary can be set as the
equilibrium distribution functions computed from the initial
value of macroscopic variables. Figure 5 shows the com-
puted density, velocity, pressure, and internal energy profiles
�symbols� at t=0.22. Also displayed in this figure are the
exact solutions �solid lines�. Clearly, the present results agree
excellently well with the exact solution.
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B. Case 2: Lax shock tube

The second test case is the Lax shock tube, which is also
a 1D problem and will be solved by the D1Q5L2 model. The
initial condition of the problem is given as

��L,uL,eL� = �0.445,0.698,19.82�, − 0.5 � x � 0,

��R,uR,eR� = �0.5,0,2.855�, 0 � x � 0.5. �77�

We set �=10−4, �0=1, L0=1, and e0=30�max�e*�=19.82.
The mesh size and time step size are taken to be the same as
those of the Sod shock tube problem. The computed density,

velocity, pressure, and internal energy profiles �symbols� at
t=0.14 are shown and compared with the exact solution
�solid lines� in Fig. 6. Obviously, the present results are very
accurate.

C. Case 3: Shock reflection on a wall

The two shock tube cases presented above are subsonic
flow problems. To validate the present model for the simula-
tion of supersonic flows with shock waves, a 2D supersonic
flow of shock reflection on the wall is considered. The in-
coming shock wave with Mach number 2.9 has an incident

FIG. 5. Density �left up�, pres-
sure �right up�, velocity �left bot-
tom�, and internal energy �right
bottom� profiles of a Sod shock
tube.

FIG. 6. Density �left up�, pres-
sure �right up�, velocity �left bot-
tom�, and internal energy �right
bottom� profiles of a Lax shock
tube.
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angle of 29° to the wall. The computational domain is a
rectangle with length of 4 and height of 1. A uniform mesh
size of 150�100 is used. The left and top boundary condi-
tions are given by

��L,uL,vL,eL� = �1,2.9,0.0,1.785714� ,

��T,uT,vT,eT� = �1.69997,2.61934,− 0.50633,2.247378� ,

�78�

and the initial density distribution functions are set as equi-
librium values. The right boundary is supersonic outflow
where the extrapolation technique is applied. At the wall, the
two levels of mirror points are used and the specular bound-
ary condition is applied to consider the velocity slip at the
wall. In the computation, we set �0=1, L0=1, e0=8
�max�e*�=7.78, and �=10−4. Figure 7 presents the com-
puted density contour in which the shock wave is well cap-
tured.

D. Case 4: Double Mach reflection

In the above case of shock reflection, the pressure ratio is
2.14, which is not high enough to generate a strong shock
wave. In this part, we consider the case of a high-pressure
ratio—that is, double Mach reflection �pressure ratio is
116.5�—to show the ability of the present model for simu-
lating a strong shock wave. For this case, a normal shock
wave with Mach number 10 passes through a 30° wedge
�Fig. 8�. A uniform mesh size of 300�100 is used for the
numerical simulation. The reference variables are set as �0
=1, L0=1, e0=75�max�e*�=72.8, and �=10−4. The com-
puted density, pressure, and internal energy contours are
shown in Fig. 9. These results are in good agreement with
those obtained by using the upwind scheme to directly solve
the Euler equation �36�. The complex features such as ob-
lique shocks and triple points are well captured.

V. CONCLUSIONS

This paper proposes a circular function in the phase field
to replace the conventional Maxwellian function as the equi-
librium density distribution function. The simple circular
function satisfies all statistical relations needed to recover the
compressible Navier-Stokes equations. In the context of the
lattice-Boltzmann method, the circular function is distributed
onto the lattice velocity directions by the Lagrangian inter-
polation in such a way that all the needed statistical relations
are exactly satisfied when the integral in the phase space is
replaced by the summation over all lattice velocity direc-
tions. In this framework, the equilibrium distribution func-
tions and the associated lattice velocity models are naturally
derived. Numerical experiments showed that compressible
inviscid flows with strong shock waves can be well simu-
lated by the present model.

APPENDIX: EQUILIBRIUM DENSITY DISTRIBUTION
FUNCTIONS OF THE D2Q13 MODEL

Substituting Eq. �57� into Eq. �36� gives

�1 = 1/16��4u4 + 5c4 − 20c2 + 16 + 16u2v2 + 4v4 − 20v2

+ 20c2v2 + 20c2u2 − 20u2� ,

�2 = − 1/24��− 16u2 + 3c4 + 4u4 − 8c2 + 6c2v2 + 12uv2

+ 18c2u2 + 12c2u + 12u2v2 − 16u + 4u3� ,

�3 = − 1/24��12u2v2 + 6c2u2 + 18c2v2 + 12c2v + 12u2v + 3c4

− 8c2 + 4v4 − 16v2 + 4v3 − 16v� ,

FIG. 7. Density contour of shock reflection on the wall.

FIG. 8. Configuration of the double-Mach-reflection
problem.

FIG. 9. Density �top�, pressure �center�, and internal energy
�bottom� contours of the double-Mach-reflection problem.
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�4 = − 1/24��− 16u2 + 3c4 + 4u4 − 8c2 + 6c2v2 − 12uv2

+ 18c2u2 − 12c2u + 12u2v2 + 16u − 4u3� ,

�5 = − 1/24��− 4v3 − 12c2v − 12u2v + 3c4 − 8c2 + 4v4 − 16v2

+ 16v + 12u2v2 + 18c2v2 + 6c2u2� ,

�6 = 1/32��8uv2 + 8vu + 4c2u + 4c2v + 8u2v + c4 + 8u2v2

+ 4c2v2 + 4c2u2� ,

�7 = 1/32��c4 + 4c2v − 8uv2 − 8vu + 4c2u2 − 4c2u + 4c2v2

+ 8u2v2 + 8u2v� ,

�8 = 1/32��c4 − 4c2v − 8uv2 + 8vu + 4c2u2 − 4c2u + 4c2v2

+ 8u2v2 − 8u2v� ,

�9 = 1/32��c4 − 4c2v + 8uv2 − 8vu + 4c2u2 + 4c2u + 4c2v2

+ 8u2v2 − 8u2v� ,

�10 = − 1/12�u + 1/24�u4 − 1/48�c2 − 1/24�u2 + 1/8�c2u2

+
1

64
�c4 + 1/12�u3 + 1/8�c2u ,

�11 =
1

192
��− 16v + 24c2v − 8v2 + 8v4 − 4c2 + 24c2v2

+ 16v3 + 3c4� ,

�12 = 1/12�u + 1/24�u4 − 1/48�c2 − 1/24�u2 + 1/8�c2u2

+
1

64
�c4 − 1/12�u3 − 1/8�c2u ,

�13 =
1

192
��16v − 24c2v − 8v2 + 8v4 − 4c2 + 24c2v2

− 16v3 + 3c4� ,

f i1
eq = �i�1 − ep� ,

f i2
eq = �iep,

where ep= �2−��e and c=�2��−1�e. Note that �, u, v, and e
are dimensionless variables.
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